QUEEN'S UNIVERSITY IONIC LIQUID LABORATORIES

QUILL

Frustrated Lewis Pairs in Ionic Liquids

Shannon McLaughlin, Małgorzata Swadźba-Kwaśny and John D. Holbrey Email: smclaughlin52@qub.ac.uk

Frustrated Lewis Pairs

Frustrated Lewis Pair Lewis Acid Lewis Base

- FLPs are compounds or mixtures containing a Lewis acid and a Lewis base that cannot combine to form a classical adduct due to steric hindrance¹
- FLP chemistry has been used to allow main group compounds to activate small molecules, including metal-free H₂ splitting^{3,4}

Mechanism of Hydrogen Splitting by an FLP

Pre-organised acid-base encounter complexes (EC) must be present in solution

Isolated Lewis acids and bases don't coordinate H₂

Orbital interactions in substrate cleavage (E-E') by an FLP

- Encounter complex in ionic liquid can be detected using ¹H NMR
- Only 5% of molecules in EC in d_6 -benzene compared to 20% of molecules in EC in [C₁₀mim][NTf₂]
- This suggests both a higher degree of association and a longer lifetime of the EC in the ionic liquid

 $P(^{t}Bu)_{3} + B(C_{6}F_{5})_{3} + H_{2} \rightarrow [HP(^{t}Bu)_{3}]^{+} + [HB(C_{6}F_{5})_{3}]^{-}$

Drawbacks of ILs:

Not Lewis acidic

Expensive

Advantages of ILs: Low volatility

1.00

- Comparable to molecular solvents (> 100 mM)
- Non-coordinating anion
- Good solubility of FLP components

Preparation of FLPs in Ionic Liquids

• Two sterically hindered phosphorus compounds were combined with BCF to form FLPs

• 160 mmol FLP/IL solutions (1 ml of ionic liquid) $P(^{t}Bu)_{3}$ P₈₈₈

phosphorus compounds

BCF

imidazolium ILs

Experimental Matrix

	P(^t Bu) ₃	P ₈₈₈		
[C ₂ mim][NTf ₂]				
[C ₁₀ mim][NTf ₂]			BCF	
[P _{666,14}][NTf ₂]	?	?		

✓ Splits hydrogen ? Unknown

Hydrogen splitting using FLPs

Monitored using ¹H NMR

Hydrogen bubbled through the FLP/IL system directly in the NMR tube

Stacked ¹H NMR spectra for FLP/IL systems after H₂ bubbling for 12 hours

Future Work

- Hydrogenation of organic substrates e.g. 1,1-diphenylethylene and transcinnamaldehyde
- Kinetic study of FLP catalysis
- SILPs and SILL

Reduction of organic substrates cinnamyl alcohol *trans*-cinnamaldehyde CH₃ 1,1-diphenylethane 1,1-diphenylethylene

Hydrogen splitting using FLPs Monitored using headspace GC Flow controller • 160 mmol FLP/IL solutions (1 ml of ionic liquid)

 For every pressure reading three identical samples are tested so that triplicate results can be obtained

Schematic diagram of the HS-GC method

(Headspace GC)

References:

- 1. Stephan, D. W. et al., Science., 2006., **314**., 1124–1126.
- 2. Erker G. et al., Angew. Chem., Int. Ed., 2010, 49, 1402-1405.
- 3. Stephan, D. W. et al., J. Am Chem. Soc., 2007., **129.**, 1880–1881. 4. Swadźba-Kwaśny, M. *et al.*, *Chem. Commun.*, 2018., **54**., 8689–8692.

5. J. M. Young *et al.*, ACS Sustain. Chem. Eng., 2023., **11**, 17787–17796.

- With thanks to: Anne McGrogan Mark Young Sam McCalmont
 - Haris Amir Aloisia King